
Probabilistic GUI Representations for Adaptive User Interfaces
Daniel Buschek

daniel.buschek@uni-bayreuth.de
Research Group HCI + AI, Department of Computer Science, University of Bayreuth

Bayreuth, Germany

ABSTRACT
This workshop position paper outlines how to facilitate dynamic
adaptations of graphical user interfaces by introducing a fundamen-
tally different, probabilistic way of representing GUI elements. As
a case study for such a representational framework, we reflect on
our previous work on ProbUI [2]. In ProbUI , each GUI element is
represented by one or more probabilistic graphical models. We mo-
tivate this by highlighting limitations of current deterministic GUIs.
We then discuss examples of adaptive mobile touch GUI widgets
implemented with ProbUI and reflect on the framewok according
to the workshop’s classification criteria. Finally, we conclude with
ideas for future work on embedding probabilistic representations
and reasoning directly into user interfaces.

CCS CONCEPTS
• Human-centered computing→ User interface toolkits.

KEYWORDS
GUI framework, probabilistic modelling, machine learning

ACM Reference Format:
Daniel Buschek. 2020. Probabilistic GUI Representations for Adaptive User
Interfaces. In IUI ’20 Workshops, March 17, 2020, Cagliari, Italy. ACM, New
York, NY, USA, 4 pages.

1 INTRODUCTION
Typically, the elements of graphical user interfaces (GUIs) today are
specified and implemented in a deterministic fashion with regard
to how they handle user input: This shows in particular in how
GUI elements, such as buttons or sliders, are represented internally
(Figure 1): Each such GUI element is modelled as a single “bounding
box”, that is, a rectangular area on the screen. Interpreting the user’s
input with this model is simply done by checking whether the user’s
finger touch point (x,y) falls inside such a bounding box. If this
is the case, the corresponding GUI element is activated and the
associated command is executed.

This deterministic boxmodel is simple to implement and to check
against input events and it has been the dominant GUI represen-
tation used in practice for many years (e.g. mobile web, Android,
iOS). However, it comes with a set of limitations with regard to
building adaptive user interfaces. The key limitations are:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IUI ’20 Workshops, March 17, 2020, Cagliari, Italy
© 2020 Copyright held by the owner/author(s).

Figure 1: Left: A mobile GUI. Centre: In the widely used box
model each GUI element is represented by one rectangle
(bounding box). User input is then handled by checking if
a touch point (x,y) falls inside a box, and the corresponding
element is activated. Right: In ProbUI , each GUI element in-
stead is represented by one or more probabilistic graphical
models of touch behaviour (“bounding behaviours”). This
position paper reflects on how this probabilistic GUI repre-
sentation facilitates dynamic adaptations of the GUI.

• Boxes cannot represent sequential input well: There are many
input actions that are not well represented by a single box,
such as gestures (e.g. finger sliding on a touchscreen does
not yield a single touch point to check with a box). Overall,
crude representations of expected user behaviour limit the
system’s potential for adaptation, for example, to variations
in said behaviour.

• Boxes have a one-to-one mapping with GUI elements: There is
traditionally just one bounding box per GUI element. This
limits implementing UI adaptations, for example, for adapta-
tions which have the goal of accounting for different possible
ways of using the UI (e.g. adaptation to hand posture, such
as thumb vs index finger use).

• Bounding boxes lack a notion of uncertainty: In the box view,
an input event such as a finger touch falls either in or out of
a box. Thus, a bounding box itself does not support handling
uncertainty and probabilistic reasoning. This is a limitation
for implementing adaptive UIs which are often intended to
react adequately to potentially uncertain user input (cf. [7]).

For for mobile touch devices in particular these limitations seem
of special importance given that in mobile contexts 1) uncertainty
is paramount and 2) changing everyday contexts render GUI adap-
tation especially interesting and potentially useful. Supporting this,
the literature presents user- and context-specific adaptations in
(mobile) touch interfaces. Keyboards in particular are a common



IUI ’20 Workshops, March 17, 2020, Cagliari, Italy Daniel Buschek

C

T TRTL

B BRBL

RL

N

EW

S

NW NE

SW SE

a) b) C L<->R N->C->S

Figure 2: Area tokens used in ProbUI ’s declarative language:
Developers specify short touch behaviours by chaining
these tokens. ProbUI thenmaps these to simple probabilistic
graphical models (HMMs), as visualised. These HMMs then
represent GUI elements instead of the traditional bounding
boxes, thus supporting probabilistic inference andGUI adap-
tations.

target for such research efforts: For instance, related work pre-
sented keyboards which adapt to walking [4] and ways of holding
the device [3, 5], as well as combinations of such factors [8].

To facilitate the realisation of adaptive (mobile) GUIs more gen-
erally, also beyond keyboards, our ProbUI framework [2] addresses
the shortcomings of the box model listed above. To achieve this it
introduces a generalised representation for GUI elements, using
probabilistic graphical models instead of bounding boxes.

2 FRAMEWORK AND EXAMPLES
Overall, from a developer’s perspective ProbUI is used as follows:

First, developers define input behaviours (e.g. for touch input:
“tap”, “slide right”, etc.) via a declarative language (Figure 2) and
attach these to specific GUI elements. In analogy to bounding boxes,
and to highlight the generalisation in ProbUI , we refer to these input
behaviours as “boundig behaviours”. ProbUI then internally maps
these to simple probabilistic graphical models (Hidden Markov
Models, HMMs [1]). This mapping is a key contribution of the
framework [2]. It allows developers to build probabilistic GUIs
without having to become experts in HMMs or similar models.

For illustration, the following code snippet specifies a button
that counts the number of times a user swipes on it left to right (e.g.
as in a “slide to unlock” lockscreen widget). Crucially, this button is
then represented with a probabilistic model of said swipe although
in the code we did not have to set up an HMM manually.

1 public class MyButton extends ProbUIButton {

private int counter;

3 // Called when setting up the GUI:

public void onProbSetup () {

5 // Add a bounding behaviour to this button:

this.core.addBehaviour("swipe_right: L->C->R");

7 // Add a rule with callback:

this.core.addRule("across on complete

9 and across is most_likely",

new RuleListener () {

11 public void onSatisfied () {

counter ++;

13 }});

}

15 // ...

Second, developers can refer to the probabilistic information
provided by ProbUI anywhere in their UI code, for example, to

Figure 3: Adaptive slider impltemented with ProbUI . Left:
While the user is sliding their thumb on the screen, the
slider continuously adapts its shape to match the thumb’s
movement arc and thus its reachable area. This uses prob-
abilistic information provided by ProbUI , in particular, to
decide which way to bend the slider. Centre: The framework
automatically handles determining which slider to activate,
based on the probabilistic information (e.g. here the bottom
slider is more likely to be used in an updwards motion, com-
pared to the top slider being used in a downwards motion).
Right: Uncertainty in target selection can be displayed as
feedback/feedforward information, such as via transparent
slider previews here.

implement UI adaptations and feedback/feedforward. As a minimal
example, the code snippet below maps the probability of the swipe
to the GUI element’s opacity.

1 public void drawSpecific(Canvas canvas) {

3 double prob = this.core.getBehaviourProb("swipe_right");
this.paint.setAlpha ((int) (prob * 255));

5 // ... draw GUI element

For a more realistic and useful example, see the slider widget in
Figure 3. Further examples can be found in the paper [2].

During use, the framework continuously updates the probability
of each bounding behaviour being currently performed by the user.
It also continuously updates each GUI element’s probability of the
user currently intending to activate this element. Together, these
probabilities support the implementation of adaptive GUIs, as in
the slider example.

3 REFLECTION
The workshop call1 motivated reflection on several aspects, which
we address in the following paragraphs.

3.1 Input
Since ProbUI as implemented for Android targetsmobile touchGUIs,
the main input is finger touch – both single touch events (“taps”)
as well as touch sequences (e.g. “swipe”, “slide”) or generally touch
“gestures”. However, the conceptual framework itself is flexible and
could account for other input modalities in the future, for example
IMU sensors (e.g. tilting or shaking the device as input).

3.2 Technique
3.2.1 Model. ProbUI uses a Hidden Markov Model to represent a
touch behaviour. It can handle multiple such behaviours and thus
multiple HMMs for a single GUI element, and of course the whole
1https://ai4aui.wordpress.com/

https://ai4aui.wordpress.com/


Probabilistic GUI Representations for Adaptive User Interfaces IUI ’20 Workshops, March 17, 2020, Cagliari, Italy

GUI likely consists of multiple such GUI elements. Thus, the whole
GUI is represented by a set of sets of HMMs.

3.2.2 Inference. Inference is conducted during interaction in a
Bayesian fashion, by 1) using the HMMs to evalute the likelihood
of the current touch input per expected behaviour, 2) inverting this
with Bayes rule to find the likelihood of each behaviour for the
given input (i.e. leading to a posterior on the question of Which
touch gesture is the user performing?), and 3) integrating over these
likelihhods for all behaviours per GUI element to get the overall
likelihood per element (i.e. leading to a posterior on the question
of Which GUI element is the user targeting?). See the ProbUI paper
for formal details [2].

3.2.3 Learning. One unusual aspect of ProbUI in its current form is
that while it applies a machine learning technique it does not learn
from data. The framework as implemented instead supports devel-
opers in manually specifying the HMM models (without requiring
knowledge of HMMs or probabilistic modelling) by introducing
a simple declarative modelling language. This language enables
developers to write down, for example, that a certain GUI element
should react to a “tap” and a “slide right”. ProbUI then maps these
declarative statements to HMMs internally, additionally informed
by defaults from the literature (e.g. about the spread of touch points
around the target).

This decision supports direct integration in GUI frameworks
as no external data collection and training is required. Neverthe-
less, conceptually, ProbUI can directly be extended to 1) instead
use HMMs fitted to recorded data, and 2) update HMMs as new
touch data is observed. In the latter case, the developer’s declarative
statements can be seen as specifying a prior on the probabilistic
GUI representation before observing user input.

3.3 Output
ProbUI outputs two sets of probabilities, updated live during inter-
action. In particular, at each new touch event ProbUI provides 1)
one probability distribution for each GUI element describing how
likely each of that element’s expected behaviours currently is; and
2) one probability distribtion across all GUI elements describing
how likely each element is the currently intended target of the user.

Developers can then use these probabilities to implement GUI
adaptations, feedback / feedforwad, decision-making, and so on.

3.4 UI Adaptation
ProbUI does not directly specify or implement a certain kind of UI
adaptation and level of automation since it is a general framework
for probabilistic GUIs. Hence, in many cases it depends on what
the developers do with the probabilistic information provided by
ProbUI . However, as such ProbUI particularly facilitates adaptations
that respond to variations in input behaviour (as opposed to e.g.
adapting to strategic usage patterns such as usage frequencies etc.).
Since it targets GUIs, adaptations typically will be visual.

Regarding the time of adaptations, ProbUI supports continuous
UI changes, i.e. dynamic adaptations, since it updates its provided
probabilities at each new touch event.

3.5 Adressed Properties of Software Quality
The key motivation for the declarative specification of input be-
haviour models in ProbUI is ease-of-use for the developer who
might not be an expert in probabilistic modelling. In this sense,
ProbUI addresses the implementation process.

In terms of software qualities such as robustness and perfor-
mance, the current implementation of ProbUI is on an advanced
prototype level: While it is mature enough to support building pro-
totypes for research and user studies it is not engineered for max-
imum performance. In particular, the inference framework lends
itself to future optimisation via parallelisation: For example, for
incoming touch data, each HMM could be evaluated in a separate
thread.

3.6 Benefits and Drawbacks
As a general key benefit, ProbUI faciliates building probabilistic
GUIs, that is, GUIs that directly embed probabilistic handling of user
input and corresponding reasoning with regard to user intention
(which behaviour and which target).

The benefits and drawbacks of specific adaptions (e.g. layout
changes depending on hand posture) likely depend more on those
adaptations than the underlying framework that is ProbUI .

However, general limitations of ProbUI in this context include 1)
not directly learning from data (in the current implementation), 2)
limited expressivity of the declarative language (i.e. limited gesture
complexity that can be expressed), and 3) higher computational
costs compared to traditional GUI representations with bounding
boxes. Moreover, using the framework requires some introduction
(also see the analysis with developers in the ProbUI paper [2]).

4 OUTLOOK
As an outlook for the concepts introduced with ProbUI , we high-
light in particular the following aspects: First, the concept could be
extended to learn from user behaviour data, for example, to update
the models over time, as user(-specific) input behaviour data is
observed. Second, the concept could integrate further modalities,
both on mobile devices, as well as part of a transfer to different
devices and contexts. Conceptually, the idea of a “bounding be-
haviour” specifies a meaningful region in any behaviour space and
thus in principle may be used for any input modality. Third, other
models than HMMs could be explored, in particular also those that
may account for more cognitive aspects (e.g. decision-making), to
go beyond modelling the physical aspects of input behaviour.

Finally, fundamentally, ProbUI embeds generative models of in-
put behaviour directly in the GUI representation. This essentially
means that such UIs come equipped with their own usage simu-
lations. Future work could build on this idea: UIs that can “use
themselves” seem highly relevant from a perspective of computa-
tional interaction [6], for example, with regard to computational
optimisation, automated UI testing, or automated generation of
usage explanations.

REFERENCES
[1] David Barber. 2012. Bayesian Rreasoning and Machine Learning. Cambridge

University Press. http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf


IUI ’20 Workshops, March 17, 2020, Cagliari, Italy Daniel Buschek

[2] Daniel Buschek and Florian Alt. 2017. ProbUI: Generalising Touch Target Represen-
tations to Enable Declarative Gesture Definition for Probabilistic GUIs. In Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17).
ACM, New York, NY, USA, 4640–4653. https://doi.org/10.1145/3025453.3025502

[3] Daniel Buschek, Oliver Schoenleben, and Antti Oulasvirta. 2014. Improving
Accuracy in Back-of-device Multitouch Typing: A Clustering-based Approach to
Keyboard Updating. In Proceedings of the 19th International Conference on Intelligent
User Interfaces (IUI ’14). ACM, New York, NY, USA, 57–66. https://doi.org/10.1145/
2557500.2557501

[4] Mayank Goel, Leah Findlater, and Jacob Wobbrock. 2012. WalkType: Using
Accelerometer Data to Accomodate Situational Impairments in Mobile Touch
Screen Text Entry. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI ’12). ACM, New York, NY, USA, 2687–2696.
https://doi.org/10.1145/2207676.2208662

[5] Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N. Patel, and Jacob O. Wob-
brock. 2013. ContextType: Using Hand Posture Information to Improve Mobile
Touch Screen Text Entry. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 2795–2798.
https://doi.org/10.1145/2470654.2481386

[6] Antti Oulasvirta, Per Ola Kristensson, Xiaojun Bi, and Andrew Howes (Eds.). 2018.
Computational Interaction. Oxford University Press.

[7] John Williamson. 2006. Continuous Uncertain Interaction. Ph.D. Dissertation.
University of Glasgow.

[8] Ying Yin, Tom Yu Ouyang, Kurt Partridge, and Shumin Zhai. 2013. Making Touch-
screen Keyboards Adaptive to Keys, Hand Postures, and Individuals: AHierarchical
Spatial Backoff Model Approach. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 2775–2784.
https://doi.org/10.1145/2470654.2481384

https://doi.org/10.1145/3025453.3025502
https://doi.org/10.1145/2557500.2557501
https://doi.org/10.1145/2557500.2557501
https://doi.org/10.1145/2207676.2208662
https://doi.org/10.1145/2470654.2481386
https://doi.org/10.1145/2470654.2481384

	Abstract
	1 Introduction
	2 Framework and Examples
	3 Reflection
	3.1 Input
	3.2 Technique
	3.3 Output
	3.4 UI Adaptation
	3.5 Adressed Properties of Software Quality
	3.6 Benefits and Drawbacks

	4 Outlook
	References

